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On Converse Bounds for Classical Communication
Over Quantum Channels
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Abstract— We explore several new converse bounds for
classical communication over quantum channels in both the
one-shot and asymptotic regimes. First, we show that the
Matthews-Wehner meta-converse bound for entanglement-
assisted classical communication can be achieved by activated,
no-signaling assisted codes, suitably generalizing a result for
classical channels. Second, we derive a new efficiently computable
meta-converse on the amount of classical information unassisted
codes can transmit over a single use of a quantum channel.
As applications, we provide a finite resource analysis of classi-
cal communication over quantum erasure channels, including
the second-order and moderate deviation asymptotics. Third,
we explore the asymptotic analogue of our new meta-converse, the
ϒ-information of the channel. We show that its regularization
is an upper bound on the classical capacity, which is generally
tighter than the entanglement-assisted capacity and other known
efficiently computable strong converse bounds. For covariant
channels, we show that the ϒ-information is a strong converse
bound.

Index Terms— Classical capacity, quantum channel, semidefi-
nite programming, strong converse, quantum channel coding.

I. INTRODUCTION

ONE of the central problems in quantum information
theory is to determine the capability of a noisy quantum

channel to transmit classical messages faithfully. The classical
capacity of a quantum channel is the highest rate (in bits
per channel use) at which it can convey classical information
such that the error probability vanishes asymptotically as the
code length increases. The Holevo-Schumacher-Westmoreland
(HSW) theorem [1]–[3] establishes that the classical capacity
of a noisy quantum channel is given by its regularized Holevo
information.
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However, in realistic settings, there are natural restrictions
imposed on the code length. One fundamental question thus
asks how much classical information can be transmitted over
a single use of a quantum channel when a finite decoding
error is tolerated. Of particular interest is the converse bound
given by Polyanskiy, Poor and Verdú (PPV) for classical
channels [4]. Their bound, named as “meta-converse”, was
established based on hypothesis testing and it limits the
performance of a coding scheme given fixed resources. They
showed by numerical examples that the bound is quite tight
for several channels of interest, even at small blocklengths.
Since then, converse bounds with a similar structure to
the PPV bound are also called meta-converse. For quantum
channels, Matthews and Wehner [5] extended the hypothesis
testing approach to the task of transmitting classical bits over
quantum channels and formulated converse bounds for codes
with or without entanglement assistance. Several other upper
and lower bounds on the one-shot classical capacity were
explored, e.g. in [6]–[9], but these in general do not match
and are often hard to compute.

In Section III we build on an exact expression, provided
in [10], for the amount of classical information that can be
transmitted over a single use of a quantum channel using
codes that are assisted by no-signaling correlations. Using this
result we show that the hypothesis testing relative entropy
converse bound by Matthews and Wehner [5] can be achieved
and is optimal for activated, no-signaling assisted codes. This
generalizes to the quantum setting a result by Matthews [11]
for no-signaling assisted classical codes, with the additional
twist that in the quantum setting the codes require a classical
noiseless channel as a catalyst.

In Section IV we provide a new efficiently computable
(as a semi-definite program) meta-converse that upper bounds
the amount of information that can be transmitted with a
single use of the channel by unassisted codes. This meta-
converse, in the spirit of the classical meta-converse by
Polyanskiy et al. [4], relates the channel coding problem to
a binary composite hypothesis test between the actual channel
and a class of subchannels that are generalizations of the
useless channels for classical communication. As a simple
application, in Section VI, we apply our meta-converse to
establish second-order asymptotics [12] and moderate devi-
ation asymptotics [13], [14] for the classical capacity of the
quantum erasure channel.

In Section V we give a new upper bound for the classical
capacity of quantum channels inspired by our meta-converse,
which we call ϒ-information of the channel. We again inter-
pret this bound as a relative entropy distance between the
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quantum channel and a class of useless completely positive
trace non-increasing maps. We show that the regularized
ϒ-information is a weak converse bound that is always smaller
than the entanglement-assisted classical capacity and the semi-
definite program strong converse bound in [10]. Furthermore,
for covariant channels, we show that the ϒ-information is in
fact a strong converse bound.

II. UNASSISTED, ENTANGLEMENT-ASSISTED AND

NO-SIGNALING ASSISTED CODES

For our purposes, a quantum channel N A�→B is a com-
pletely positive (CP) and trace-preserving (TP) linear map
from operators on a finite-dimensional Hilbert space A� to
operators on a finite-dimensional Hilbert space B . We are
interested in sending classical messages from Alice to Bob
via a given quantum channel N . The usual coding scheme
is as follows. Alice encodes her message via an operation
EA→A� and sends the encoded message to Bob through the
channel NA�→B . After receiving the message, Bob performs
an operation DB→B � to decode it. More generally, instead of
considering the encoding and decoding operations separately,
one could imagine the coding protocol as a single super-
operator �AB→A� B � . Chiribella et al. [15] showed that a two-
input and two-output CPTP map �AB→A� B � sends any CPTP
map NA�→B to another CPTP map MA→B � if and only if
�AB→A� B � is B to A no-signaling (see also [16]). We denote
by MA→B � = �AB→A� B � ◦ NA�→B the resulting composite
channel of the super-operator �AB→A� B � and the channel
NA�→B . Then the classical communication task is equivalent to
Alice sending the classical messages to Bob using the effective
channel MA→B � . We say � is an �-assisted code if it can
be implemented by local operations with �-assistance. In the
following, we eliminate � for the case of unassisted codes
and write � = E and � = NS for entanglement-assisted
and no-signaling-assisted (NS-assisted) codes, respectively.
In particular,

• an unassisted code reduces to the product of encoder and
decoder, i.e., � = DB→B �EA→A� ;

• an entanglement-assisted code corresponds to a super-
channel of the form � = DB ̂B→B �EÂA→A��̂ÂB ,
where �

̂ÂB can be any entangled state shared between
Alice and Bob;

• a NS-assisted code corresponds to a superchan-
nel which is no-signaling from Alice to Bob and
vice-versa.

Given a quantum channel NA→B and any�-assisted code�
with size m, the optimal average success probability of N to
transmit m messages is given by

psucc,�(N ,m) := 1

m
sup

m
∑

k=1

Tr M(|k��k|)|k��k|,

s.t. M = � ◦ N is the effective channel. (1)

With this in hand, we now say that a triplet (r, n, ε) is
achievable on the channel N with �-assisted codes if

1

n
log m ≥ r, and psucc,�(N⊗n,m) ≥ 1 − ε. (2)

Fig. 1. General code scheme.

Throughout the paper we take the logarithm to be base two
unless stated otherwise. We are interested in the following
boundary of the non-asymptotic achievable region:

C(1)
� (N , ε) := sup

{

log m
∣

∣ psucc,�(N ,m) ≥ 1 − ε
}

. (3)

We also define psucc,�(N , ρA,m) and C(1)
� (N , ρA, ε) as the

same optimization but only using codes with a fixed average
input ρA. The �-assisted classical capacity of a quantum
channel is

C�(N ) = lim
ε→0

lim
n→∞

1

n
C(1)
� (N⊗n , ε). (4)

III. MATTHEWS-WEHNER CONVERSE VIA ACTIVATED,
NO-SIGNALING ASSISTED CODES

For classical communication over quantum channels
assisted by entanglement, Matthews and Wehner [5] proved
a meta-converse bound R(N , ε) in terms of the hypothesis
testing relative entropy which generalizes Polyanskiy et al.’s
approach [4] to quantum channels assisted by entangle-
ment. Given a quantum channel N , they proved that [5]
C(1)

E (N , ε) ≤ R(N , ε) where

R(N , ε) := max
ρA�

min
σB

Dε
H (NA→B (φA� A)�ρA� ⊗ σB), (5)

φAA� = (

1A ⊗ ρ
1/2
A�

)

˜
AA�
(

1A ⊗ ρ
1/2
A�

)

is a purification
of ρA� and ˜
AA� = ∑

i j |i Ai A� �� jA jA� | denotes the unnor-
malized maximally entangled state. In the above expression
the quantum hypothesis testing relative entropy is defined
as [7] Dε

H (ρ0�ρ1) := − logβε(ρ0�ρ1) with βε(ρ0�ρ1) =
min

{

Tr Qρ1
∣

∣ 1 − Tr Qρ0 ≤ ε, 0 ≤ Q ≤ 1
}

, which is the min-
imum type-II error for the test while the type-I error is
no greater than ε. Note that βε is a fundamental quan-
tity in quantum theory [17]–[19] with many applications
(e.g., [7], [20]–[26]) and can be solved by a semi-definite
program (SDP). The Matthews-Wehner bound in Eq. (5) thus
constitutes an SDP itself, i.e.

R(N , ε) = − log minimize
FAB , ρA, λ

λ

subject to 0 ≤ FAB ≤ ρA ⊗ 1B,

Tr ρA = 1,

TrA FAB ≤ λ1B

Tr JN FAB ≥ 1 − ε. (6)

Here the Choi-Jamiołkowski matrix [27], [28] of N is given by
JN = ∑

i j |i A�� jA|⊗N (|i A� �� jA� |), where {|i A�} and {|i A� �} are
orthonormal bases on isomorphic Hilbert spaces HA and HA� ,
respectively.
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For classical channels, the Matthews-Wehner bound is
exactly equal to the one-shot classical capacity assisted by
NS codes [11]. For quantum channels the one-shot ε-error
capacity assisted by NS codes is given by [10]

C(1)
NS(N , ε) = − log minimize

FAB , ρA, η
η

subject to 0 ≤ FAB ≤ ρA ⊗ 1B ,

Tr ρA = 1,
TrA FAB = η1B,

Tr JN FAB ≥ 1 − ε. (7)

Note that the only difference between the SDPs (6) and (7)
is the partial trace constraint of FAB . However, unlike in the
classical special case, the SDPs in (6) and (7) are not equal
in general [10].

In this section we show that this gap can be closed by con-
sidering activated, NS-assisted codes. The concept of activated
capacity follows the idea of potential capacities of quantum
channels [29]–[31]. The model is described as follows. For a
quantum channel N assisted by NS codes, we can first borrow
a noiseless classical channel Im whose capacity is log m, then
we can use N ⊗ Im to transmit classical messages. After the
communication finishes, we just pay back the capacity of Im .
The code scheme in this scenario is what we call activated
code. Note that this kind of communication method was also
studied in zero-error information theory [32], [33].

Definition 1 For any quantum channel N , we define

C(1)
NS,a(N , ε) := sup

m≥1

[

C(1)
NS(N ⊗ Im , ε)− log m

]

, (8)

where Im(ρ) := ∑m
i=1 Tr(ρ|i��i |)|i��i | the classical noiseless

channel with capacity log m.

The following is the main result of this section.

Theorem 2 For any quantum channel NA→B and error tol-
erance ε ∈ (0, 1), we have

C(1)
NS,a(N , ε) = R(N , ε). (9)

The proof outline is as follows. We first show that I2 is
enough to activate the channel to achieve the bound R(N , ε)
in the following Lemma 3, i.e.,

C(1)
NS,a(N , ε) ≥ C(1)

NS(N ⊗ I2, ε)− 1 ≥ R(N , ε). (10)

We then show that R(N , ε) is additive for noiseless channel
in the following Lemma 4, i.e.,

R(N ⊗ Im, ε) = R(N , ε)+ log m. (11)

This implies that R(N , ε) is also a converse bound for the
activated capacity, i.e.,

C(1)
NS,a(N , ε) = sup

m≥1

[

C(1)
NS(N ⊗ Im , ε)− log m

]

(12)

≤ sup
m≥1

[

R(N ⊗ Im, ε)− log m
]

(13)

= R(N , ε). (14)

Then Theorem 2 directly follows from Lemmas 3 and 4.

Lemma 3 We have C(1)
NS(N ⊗ I2, ε)− 1 ≥ R(N , ε).

Proof: This proof is based on a key observation that the
additional one-bit noiseless channel can provide a larger solu-
tion space to help the activated capacity achieve the quantum
hypothesis testing converse. The dual SDP of R(N , ε) is given
in the following Eq. (23). By Slater’s theorem [34], the strong
duality holds. Suppose that the optimal solution to SDP (6) of
R(N , ε) is {λ, ρA1 , FA1 B1}. We are going to use this optimal
solution to construct a feasible solution of the SDP (7) of
C(1)

NS(N ⊗ I2, ε).
Let us choose

ρA1 A2 = ρA1 ⊗ 1

2
(|0��0| + |1��1|)A2 , and (15)

FA1 A2 B1 B2 = 1

2
FA1 B1 ⊗ G A2 B2 + 1

2
˜FA1 B1 ⊗ ˜G A2 B2, (16)

with

G A2 B2 = (|00��00| + |11��11|)A2 B2, (17)
˜G A2 B2 = (|01��01| + |10��10|)A2 B2, (18)
˜FA1 B1 = ρA1 ⊗ (λ1B1 − TrA1 FA1 B1). (19)

We see that FA1 A2 B1 B2 ≥ 0, ρA1 A2 ≥ 0 and Tr ρA1 A2 = 1.
Moreover, this construction ensures that

TrA1 A2 FA1 A2 B1 B2

= 1

2
Tr A1

[

(FA1 B2 + ˜FA1 B1)⊗ 1B2

] = λ

2
1B1 B2, (20)

and

Tr(JN ⊗ DA2 B2)FA1 A2 B1 B2

= 1

2
Tr JN FA1 B1 ⊗ Tr DA2 B2 G A2 B2 (21)

= Tr JN FA1 B1 ≥ 1 − ε, (22)

where DA2 B2 = ∑1
i=0 |i i��i i | is the Choi-Jamiołkowski matrix

of I2. Furthermore, ρA1 ⊗ 1B1 − ˜FA1 B1 ≥ 0 and conse-
quently we find that ρA1 A2 ⊗ 1B1 B2 − FA1 A2 B1 B2 ≥ 0. Hence,
{ 1

2λ, ρA1 A2 , FA1 A2 B1 B2

}

is a feasible solution, ensuring that
C(1)

NS(N ⊗ I2, ε)− 1 ≥ R(N , ε).
Lemma 4 We have R(N ⊗ Im , ε) = R(N , ε) + log m.

Proof: On the one hand, it is easy to prove that R(N ⊗
Im, ε) ≥ R(N , ε) + log m. To see the other direction, we are
going to use the dual SDP of R(N , ε):

R(N , ε) = − log maximize
X AB , YB , s, t

[s(1 − ε)− t]
subject to X AB + 1A ⊗ YB ≥ s JN ,

TrB X AB ≤ t1A,

Tr YB ≤ 1,

X AB , YB , s ≥ 0. (23)

We note that the strong duality holds here by Slater’s the-
orem [34]. Suppose that the optimal solution to the dual
SDP (23) of R(N , ε) is {̂X AB ,̂YB , ŝ,̂t }. Let us choose
X AA� B B � = 1

m
̂X AB ⊗ Dm , YB B � = 1

m
̂YB ⊗ 1m, s = 1

m ŝ,
t = 1

m
̂t, with Dm = ∑m−1

i=0 |i i��i i |. Then it can be easily
checked that

X AA� B B � + 1AA� ⊗ YB B �

≥ (

̂X AB + 1A ⊗ ̂YB
) ⊗ Dm

m
≥ s JN ⊗ Dm . (24)
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The other constraints can be verified similarly. Thus,
{X AA� B B �,YB B �, s, t} is a feasible solution to the SDP (23)
of R(N ⊗ Im , ε), which implies that

R(N ⊗ Im, ε) ≤ − log[s(1 − ε)− t] = R(N , ε)+ log m,

and completes the proof.

IV. NEW META-CONVERSE FOR UNASSISTED

CLASSICAL COMMUNICATION

In the following we will use the concept of subchannels.
Denote S(A) := {ρA ≥ 0 | Tr ρA = 1} as the set of quantum
states on A. A subchannel NA→B is a CP linear map that is
trace non-increasing, i.e., Tr N (ρ) ≤ 1 for all quantum states
ρ ∈ S(A).

Recall that the only useless quantum channel for clas-
sical communication is the constant channel N (·) =
σ [1]–[3], [35], [36], which maps all states ρ on A to a
constant state σ on B . As a natural extension, we say a
subchannel N is constant-bounded if it maps all states ρ to
positive definite operators that are smaller than or equal to a
constant state σ , i.e.,

N (ρ) ≤ σ,∀ρ ∈ S(A). (25)

We also define the set of constant-bounded subchannels as
V := {M ∈ CP(A : B)

∣

∣ ∃ σ ∈ S(B) s.t. M(ρ) ≤ σ,∀ρ ∈
S(A)}, where CP(A : B) denotes the set of all CP linear maps
from A to B . Clearly, the set V is convex and closed. This
inspires the following new one-shot converse bound.

Theorem 5 For any quantum channel NA�→B and error tol-
erance ε ∈ (0, 1), we have

C(1)(N , ε)
≤ max

ρA�
min
M∈V

Dε
H (NA�→B(φA� A)�MA�→B(φA� A)) (26)

= min
M∈V

max
ρA�

Dε
H (NA�→B(φA� A)�MA�→B(φA� A)), (27)

where φA� A is a purification of ρA� .

Proof: Consider an unassisted code with inputs {ρk}m
k=1

and POVM {Mk}m
k=1 whose average input state is ρA� =

∑m
k=1

1
m ρk , the success probability to transmit m messages

is given by

psucc = 1

m

m
∑

k=1

Tr N (ρk)Mk (28)

= Tr JN
(

m
∑

k=1

1

m
ρT

k ⊗ Mk

)

(29)

= TrNA�→B(φAA� )E, (30)

where

E := (ρT
A )

−1/2

(

m
∑

k=1

1

m
ρT

k ⊗ Mk

)

(ρT
A )

−1/2. (31)

Then we have

0≤ E ≤ (ρT
A )

−1/2

(

m
∑

k=1

1

m
ρT

k ⊗ 1B

)

(ρT
A )

−1/2 =1AB . (32)

Let us fix M ∈ V and assume that the output states of M are
bounded by the state σB , then

Tr MA�→B(φAA� )E = Tr JM

(

m
∑

k=1

1

m
ρT

k ⊗ Mk

)

(33)

= 1

m

m
∑

k=1

Tr M(ρk)Mk (34)

≤ 1

m

m
∑

k=1

Tr σB Mk = 1

m
. (35)

The second line follows from the fact that JM =
(ρT

A )
−1/2MA�→B(φAA� )(ρT

A )
−1/2. In the third line,

we use the inverse Choi-Jamiołkowski transformation
MA�→B(ρA� ) = TrA JM(ρT

A ⊗ 1B). The forth line follows
since any output state of M is bounded by the state σB .
Therefore, combining Eqs. (30) and (35), we know that
Tr NA�→B(φAA� )E ≥ 1 − ε and Tr MA�→B(φAA� )E ≤ 1

m .
Thus C(1)(N , ρA� , ε) ≤ minM∈V Dε

H (NA�→B(φAA� )�MA�→B
(φAA� )). Maximizing over all average input ρA� , we can obtain
the desired result of (26).

Since βε(NA�→B(φA� A)�MA�→B(φA� A)) is convex in
ρA� and concave in M [5], we can exchange the maximization
and minimization by applying Sion’s minimax theorem [37]
and obtain the result of (27).
Remark Noting that E above also satisfies 0 ≤ ETB ≤ 1,
we can further obtain an upper bound of C(1)(N , ε) as

max
ρA�

min
M∈V

Dε
H,P PT (NA�→B(φA� A)

∥

∥MA�→B(φA� A)), (36)

where Dε
H,P PT (ρ0�ρ1) is defined as the optimal value of

− log min{Tr Eρ1
∣

∣1 − Tr Eρ0 ≤ ε, 0 ≤ E, ETB ≤ 1}. (37)

If we consider maxρA� Dε
H (NA�→B(φA� A)�MA�→B(φA� A))

as the “distance” between the channel N and CP map M,
then our new meta-converse can be treated as the “distance”
between the given channel N with the set of all constant-
bounded subchannels.

To make this meta-converse bound efficiently computable,
we can restrict the set of constant-bounded subchannels V to
an SDP-tractable set of CP maps. Let us define

Vβ := {M ∈ CP(A : B) | β(JM) ≤ 1}, (38)

where β(JM) is given by the following SDP

β(JM) := minimize
SB,RAB

Tr SB

subject to − RAB ≤ J TB
M ≤ RAB ,

− 1A ⊗ SB ≤ RTB
AB ≤ 1A ⊗ SB . (39)

Here JM is the Choi-Jamiołkowski matrix of M and TB

means the partial transpose on system B . We note that β(·) for
a quantum channel N is faithful in the sense that β(JN ) = 1
if and only if C(N ) = 0 [10]. Thus the set Vβ contains all
the constant channels, which makes it reasonable, to some
extent, to introduce the set Vβ here. Moreover, the set Vβ
also satisfies some basic properties such as convexity and
invariance under composition with unitary maps. These are
shown in Appendix A.
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Lemma 6 The set Vβ is a subset of V , i.e., Vβ ⊆ V .

Proof: Note that the strong duality of SDP (39) holds
due to the Slater’s theorem [34]. Given a CP map M in Vβ ,
we suppose that the optimal solution of β(JM) is {RAB , SB }.
Then, we know β(JM) = Tr SB ≤ 1. Furthermore, for any
input ρA, the output M(ρA) satisfies that

MA→B (ρA) = TrA

√

ρT
A JM

√

ρT
A (40)

=
(

Tr A

√

ρT
A J TB

M
√

ρT
A

)T

(41)

≤
(

Tr A

√

ρT
A RAB

√

ρT
A

)T

(42)

= TrA

√

ρT
A RTB

AB

√

ρT
A (43)

≤ TrA

√

ρT
A (1A ⊗ SB)

√

ρT
A (44)

= SB . (45)

As a consequence of Theorem 5 and Lemma 6, we have
the following meta-converse.

Theorem 7 For any quantum channel NA�→B and error tol-
erance ε ∈ (0, 1), we have

C(1)(N , ε)
≤ max

ρA�
min

M∈Vβ
Dε

H (NA�→B(φA� A)�MA�→B(φA� A)) (46)

= min
M∈Vβ

max
ρA�

Dε
H (NA�→B(φA� A)�MA�→B(φA� A)), (47)

where φA� A is a purification of ρA� . Note that this bound can
be computed via SDP (see Appendix D).

There are several other converses for the one-shot ε-error
capacity of a general quantum channel, e.g., the Matthews-
Wehner converse [5], the Datta-Hsieh converse [38], and
the recent SDP converse via no-signaling (NS) and positive-
partial-transpose-preserving (PPT) codes [10]. Note that the
Datta-Hsieh converse is not known to be efficiently com-
putable. Also, our meta-converses in Theorem 5 and 7 are
always tighter than the Matthews-Wehner converse in Eq. (5)
since we can rewrite R(N , ε) as

max
ρA�

min
M∈W

Dε
H (NA�→B(φA� A)�MA�→B(φA� A)), (48)

where W is the set of all constant channels and W � Vβ � V .
But our relaxed meta-converse in Theorem 7 is no tighter than
the SDP converse via NS and PPT codes (cf. [10, Th. 4]).

As we will show later, our meta-converse will lead to new
results in both the finite blocklength and asymptotic regimes.
In particular, our new bounds allow us to establish finite
blocklength analysis for quantum channels beyond classical-
quantum channels (cf. Section VI), which haven’t been done
via previous converse bounds.

V. COMPARISON OF ASYMPTOTIC CONVERSE BOUNDS

By substituting the relative entropy for the hypothesis
testing relative entropy in our meta-converse we define the

Fig. 2. Relation graph of converse bounds. An arrow A −→ B indicates that
A(N ) ≥ B(N ) for any channel N . A B indicates that A and B are not
comparable, i.e, A(N ) > B(N ) for some channel N and A(M) < B(M)
for some channel M.

following quantity, which we call the ϒ-information of the
channel N ,

ϒ(N ) := max
ρA�

min
M∈V

D(NA�→B(φA� A)�MA�→B(φA� A)), (49)

where the relative entropy is defined as D(ρ�σ) :=
Tr ρ(logρ − log σ) if suppρ ⊆ suppσ and +∞ otherwise.
We also introduce its regularization,

ϒ∞(N ) := lim sup
n→∞

1

n
ϒ(N⊗n ). (50)

Recently, one of us and his collaborators [10] derived an
SDP strong converse bound Cβ(N ) for the classical capacity
of a general quantum channel, which means that any code with
a rate exceeding this bound will have a vanishing success prob-
ability. To be specific, for any quantum channel N , it holds that
C(N ) ≤ Cβ(N ) := logβ(JN ). In this section our goal is to
compare ϒ and ϒ∞ with other known quantities: the Holevo
capacity χ , the classical capacity C (or regularized Holevo
capacity), the entanglement-assisted classical capacity CE , and
the strong converse bound Cβ . The graph of relations among
these quantities is displayed in Fig. 2.

Proposition 8 For any quantum channel N , we have

χ(N ) ≤ ϒ(N ) and C(N ) ≤ ϒ∞(N ). (51)

Proof: We first need to prove that the quantity
D(NA�→B(φA� A)�MA�→B(φA� A)) is concave in ρA� . For any
convex combination ρA� = ∑

i piρ
i
A� , suppose ρi

A� has a
purification φi

A� A. Then |ψP AA� � = ∑

i
√

pi |i� ⊗ |φi
AA� � is a

purification of the state ρA� . By the data-processing inequality
of the relative entropy under the channel

∑

i |i��i | · |i��i |,
we have

D(NA�→B(ψP AA� )
∥

∥MA�→B(ψP AA� )) ≥ D(G1�G2),

with

G1 =
∑

i

pi |i��i | ⊗ NA�→B(φ
i
AA� ), (52)

G2 =
∑

i

pi |i��i | ⊗ MA�→B(φ
i
AA� ). (53)
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Then the concavity follows from

D(G1�G2) =
∑

i

pi D(NA�→B(φ
i
AA� )�MA�→B(φ

i
AA� )).

We have the following chain of inequalities:

ϒ(N ) = max
ρA�

min
M∈V

D(NA�→B(φA� A)
∥

∥MA�→B(φA� A)) (54)

= min
M∈V

max
ρA�

D(NA�→B(φA� A)
∥

∥MA�→B(φA� A)) (55)

≥ min
M∈V

max
ρA�

D(NA�→B(ρA� )
∥

∥MA�→B(ρA� )) (56)

≥ min
M∈V

max
ρA�

D(NA�→B(ρA� )
∥

∥σM) (57)

≥ min
σB

max
ρA�

D(NA�→B(ρA� )
∥

∥σB) (58)

= χ(N ). (59)

The second line follows by Sion’s minimax theorem [37]
since D(NA�→B(φA� A)

∥

∥MA�→B(φA� A)) is convex in M and
concave in ρA� . The third line follows by tracing out the system
A and the data-processing inequality of the relative entropy.
The fourth line follows since for any M ∈ V and ρA� , there
exists a state σM independent of ρA� such that MA�→B(ρA� ) ≤
σM. Due to the dominance property of the relative entropy,
we have the inequality. The fifth line follows since we relax
the feasible set of the minimization to a larger set. The last
line follows from the characterization of the Holevo capacity
as the divergence radius [35].

Finally, according to the HSW theorem, we have

C(N ) = lim sup
n→∞

1

n
χ(N⊗n) (60)

≤ lim sup
n→∞

1

n
ϒ(N⊗n ) = ϒ∞(N ), (61)

which completes the proof.

Proposition 9 For any quantum channel N , we have

ϒ(N ) ≤ CE (N ) and ϒ∞(N ) ≤ CE (N ). (62)

Proof: For any state σB we introduce a trivial channel
M that always outputs σB via its Choi-Jamiołkowski matrix
JM = 1A ⊗ σB . Then M ∈ V and we have

min
σB

D(NA�→B(φAA� )�ρA ⊗ σB)

= min
σB

D
(NA�→B(φAA� )�ρ1/2

A (1A ⊗ σB)ρ
1/2
A

)

(63)

≥ min
M∈V

D(NA�→B(φAA� )�MA�→B(φAA� )). (64)

Take maximization over all input state ρA� on both sides,
we have CE (N ) ≥ ϒ(N ). Furthermore, since CE (N ) is
additive, we have

CE (N ) = lim sup
n→∞

1

n
CE (N⊗n) (65)

≥ lim sup
n→∞

1

n
ϒ(N⊗n ) = ϒ∞(N ), (66)

which completes the proof.

Proposition 10 For any quantum channel N , we have

ϒ(N ) ≤ Cβ(N ) and ϒ∞(N ) ≤ Cβ(N ). (67)

Proof: Take ˜M = 1
β(JN )N , then ˜M ∈ Vβ ⊆ V and

ϒ(N ) = max
ρA�

min
M∈V

D(NA�→B(φAA� )�MA�→B(φAA� ))

≤ max
ρA�

D
(NA�→B(φAA� )� ˜MA�→B(φAA� )

)

(68)

= max
ρA�

D
(

NA�→B(φAA� )
∥

∥

∥

NA�→B(φAA� )

β(JN )

)

(69)

= logβ(JN ) (70)

= Cβ(N ). (71)

Furthermore, since Cβ(N ) is additive [10], we have

ϒ∞(N ) = lim sup
n→∞

1

n
ϒ(N⊗n) (72)

≤ lim sup
n→∞

1

n
Cβ(N⊗n) = Cβ(N ), (73)

which completes the proof.
In the remainder we focus on covariant channels which

allow us to simplify the set of input states. Let G be a finite
group, and for every g ∈ G, let g → UA(g) and g → VB(g)
be unitary representation acting on the input and output spaces
of the channel, respectively. Then a quantum channel NA→B

is G-covariant if ∀ρA ∈ S(A),
NA→B

(

UA(g)ρAU†
A(g)

) = VB(g)NA→B (ρA)V
†
B(g).

A quantum channel is covariant if it is covariant with respect
to a finite group G for which each g ∈ G has a unitary repre-
sentation U(g) such that {U(g)}g∈G is a unitary one-design.
That is, the map 1

|G|
∑

g∈G U(g)(·)U(g)† always outputs the
maximally mixed state for all input states.

Proposition 11 For any covariant channel N , we have

ϒ∞(N ) ≤ ϒ(N ). (74)

Proof: Following the proof steps in Lemma 18 for the
quantum relative entropy, we can fix the average input state
of ϒ(N ) to be the maximally mixed state. Therefore, we find

ϒ(N ) = min
M∈V

D(NA�→B(
A� A)
∥

∥MA�→B(
A� A)), (75)

where 
A� A = 1
d

∑d−1
i, j=0 |i i�� j j |. Thus it is clear that that ϒ is

subadditive for covariant channels, i.e., ϒ(N⊗n) ≤ nϒ(N ),
which implies ϒ∞(N ) ≤ ϒ(N ).
Remark In an analogous spirit as in [39] we can also show
that the ϒ-information of a channel is a strong converse
bound for covariant channels. We present this analysis in
Appendix C.

We provide a summarized graph of relations among the
old bounds and new bounds in Fig. 2. Since Cβ and CE are
relaxations of the ϒ-information, then the ϒ-information is
expected to be generally tighter than Cβ and CE . Similarly,
since the ϒ-information is a relaxation of the Holevo capacity,
the inequality between them may be strict in general. However,
for quantum erasure channels, our ϒ-information is tight and
it holds that

ϒ(Ep) = ϒ∞(Ep) = C(Ep) = χ(Ep) = (1 − p) log d,
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(see details in Section VI). Combining this property
and the meta-converse in Theorem 7, we establish the
finite blocklength analysis for classical communication
over quantum erasure channels in Theorems 13 and 14.
Another interesting case is the qubit depolarizing chan-
nel ND(ρ) := (1 − p)ρ + p

3 (XρX + YρY + ZρZ), where
X , Y and Z are Pauli matrices. For this class of channels,
we numerically find that the ϒ-information appears to be
strictly larger than the Holevo capacity but it is tighter than
Cβ and CE . We expect that the ϒ-information may have
further applications in studying the strong converse property
of other quantum channels.

VI. FINITE BLOCKLENGTH ANALYSIS FOR

QUANTUM ERASURE CHANNEL

The quantum erasure channel is denoted by

Ep(ρ) := (1 − p)ρ + p|e��e|, (76)

where |e� is orthogonal to the input Hilbert space. The classical
capacity of a quantum erasure channel is given by C(Ep) =
(1 − p) log d, where d is the dimension of input space [40].
In [41], the strong converse property for the classical capacity
of Ep is established.

In this section, applying our new meta-converse, we derive
the second-order expansion and moderate deviation analy-
sis of quantum erasure channel in Theorem 13 and 14,
respectively. To our knowledge, this is the first second-
order or moderate deviation expansion of classical capacity
beyond entanglement-breaking channels.

We first show that the ϒ-information matches the classical
capacity for erasure channels.

Lemma 12 For any quantum erasure channel Ep with input
dimension d, we have ϒ(Ep) = (1 − p) log d.

Proof: Since quantum erasure channels are covariant,
we can restrict the input state to the maximally mixed
state, i.e.,

ϒ(Ep) = min
M∈V

D(Ep(
A� A)
∥

∥M(
A� A)), (77)

where 
A� A = 1
d

∑d−1
i, j=0 |i i�� j j | is the maximally entangled

state. Denote

JM = 1 − p

d

d−1
∑

i, j=0

|i i�� j j | + p
d−1
∑

i=0

|i��i | ⊗ |d��d| (78)

as the Choi-Jamiołkowski matrix of the CP map M. Then we
have M ∈ Vβ ⊆ V and

ϒ(Ep) ≤ D(Ep(
A� A)
∥

∥M(
A� A)) = (1 − p) log d. (79)

On the other hand, since ϒ is an upper bound on the classical
capacity for covariant channels due to Proposition 8 and 11,
we have (1 − p) log d = C(Ep) ≤ ϒ(Ep). Together with
Eq. (79), we have the desired result.

A. Second-Order Asymptotics of Quantum Erasure Channel

Theorem 13 For any quantum erasure channel Ep with para-
meter p and input dimension d, we have

C(1)(E⊗n
p , ε) = n(1 − p) log d

+
√

np(1 − p)(log d)2 
−1(ε)+ O(log n), (80)

where 
 is the cumulative distribution function of a standard
normal random variable.

Proof: For the direct part, denote

F1(ρ) :=
d−1
∑

i=0

�i |ρ|i�|i��i |, and (81)

F2(ρ) :=
d

∑

i=0

�i |ρ|i�|i��i |, (82)

which are both classical channels. Then Np = F2 ◦ Ep ◦ F1
is a classical erasure channel. We have

C(1)(E⊗n
p , ε) ≥ C(1)(N⊗n

p , ε) = n(1 − p) log d

+
√

np(1 − p)(log d)2 
−1(ε)+ O(log n), (83)

where the equality comes from the result in [4].
For the converse part, we have

C(1)(E⊗n
p , ε) ≤ min

M∈V
Dε

H (E⊗n
p (
⊗n

A� A)
∥

∥MA�n→Bn (
⊗n
A� A)).

(84)

Take MA�n→Bn = M⊗n
A�→B , where MA�→B is the same CP

map as given by Eq. (78), we have

Dε
H (E⊗n

p (
⊗n
A� A)

∥

∥M⊗n
A�→B(


⊗n
A� A)) (85)

= nD(Ep(
A� A)
∥

∥M(
A� A)) (86)

+
√

nV (Ep(
A� A)
∥

∥M(
A� A))

−1(ε)+ O(log n)

= n(1 − p) log d +
√

np(1 − p)(log d)2
−1(ε)+ O(log n).

In the second line, we use second-order expansion of quan-
tum hypothesis testing relative entropy and V (ρ�σ) :=
Tr ρ(logρ − log σ)2 − D(ρ�σ)2 is the quantum information
variance [42], [43]. The third line follows by direct calculation.
Combining this with (84) leads to the desired bound.

B. Moderate Deviation of Quantum Erasure Channel

Theorem 14 For any squence {an} such that an → 0 and√
nan → ∞, let εn = e−na2

n . For any quantum erasure channel
Ep with parameter p and input dimension d, it holds

1

n
C(1)(E⊗n

p , εn) = (1 − p) log d

−
√

2 p(1 − p)(log d)2 an + o(an), (87)
1

n
C(1)(E⊗n

p , 1 − εn) = (1 − p) log d

+
√

2 p(1 − p)(log d)2 an + o(an). (88)

Proof: We only need to prove Eq. (87), and Eq. (88)
can be proved with the same argument. For the converse part,
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we apply the moderate deviation of hypothesis testing
in [13] and [14] to our meta-converse in Eq. (84). Specifically,

C(1)(E⊗n
p , ε) ≤ Dε

H (E⊗n
p (
⊗n

A� A)
∥

∥M⊗n
A�→B(


⊗n
A� A)), (89)

where MA�→B is the CP map given by Eq. (78). Thus

1

n
C(1)(E⊗n

p , εn)

≤ 1

n
Dε

H (E⊗n
p (
⊗n

A� A)
∥

∥M⊗n
A�→B(


⊗n
A� A)) (90)

= D(Ep(
A� A)�MA�→B(
A� A)) (91)

−
√

2V (Ep(
A� A)�MA�→B(
A� A)) an + o(an)

= (1 − p) log d −
√

2 p(1 − p)(log d)2 an + o(an). (92)

The direct part proceeds analogously to the direct part in
Theorem 13.

APPENDIX A
SOME PROPERTIES OF Vβ

Lemma 15 The set Vβ is convex.

Proof: Due to the Choi-Jamiołkowski isomorphism,
we only need to prove that the set {K ≥ 0 | β(K ) ≤ 1}
is convex. That is, for any K1, K1 ∈ {K ≥ 0 | β(K ) ≤ 1} we
prove that for any p ∈ (0, 1),

K = pK1 + (1 − p)K2 ∈ {K ≥ 0 | β(K ) ≤ 1}. (93)

It is clear that K ≥ 0. Suppose optimal solutions of β(K1)
and β(K2) are {R1, S1} and {R2, S2}, respectively. Then we
can verify that {pR1 + (1 − p)R2, pS1 + (1 − p)S2} is a
feasible solution of β(K ). Thus β(K ) ≤ Tr pS1 +(1− p)S2 =
p Tr S1 + (1 − p)Tr S2 ≤ 1.

Lemma 16 For any local unitary UA ⊗ VB and K ≥ 0,
it holds β

(

(UA ⊗ VB)K
(

U†
A ⊗ V †

B

)) = β(K ).

Proof: Suppose the optimal solution of β(K ) is taken at
{RAB , SB }. Then it is easy to verify that {UA ⊗ V B RABU†

A ⊗
V T

B , VB SB V †
B} is a feasible solution of β

(

UA⊗VB K U†
A⊗V †

B

)

.
Thus we have

β
(

UA ⊗ VB K U†
A ⊗ V †

B

) ≤ Tr VB SB V †
B = Tr SB = β(K ).

Furthermore, we have β(K ) = β
((

U†
A ⊗V †

B

)(

UA ⊗VB K U†
A ⊗

V †
B

)

(UA ⊗ VB)
) ≤ β

(

UA ⊗ VB K U†
A ⊗ V †

B

)

, which completes
the proof.

Corollary 17 For any unitary channel UA�→A� and VB→B,
if MA�→B ∈ Vβ , then

VB→B ◦ MA�→B ◦ UA�→A� ∈ Vβ. (94)

Proof: Denote JM = MA�→B
(

˜
A� A
)

, where ˜
A� A
denotes the unnormalized maximally entangled state. Let

UA�→A� (·) = UA� · U†
A� and VB→B(·) = VB · V †

B . Since
MA�→B ∈ Vβ , we have JM ≥ 0 and β(JM) ≤ 1. Then,

K AB = VB→B ◦ MA�→B ◦ UA�→A�
(

˜
A� A
)

(95)

= VB→B ◦ MA�→B
(

UA� ˜
A� AU†
A�

)

(96)

= VB→B ◦ MA�→B
(

U T
A

˜
A� AU A
)

(97)

= VB→B

(

U T
A MA�→B

(

˜
A� A
)

U A

)

(98)

= U T
A ⊗ VB JMU A ⊗ V †

B . (99)

So K AB ≥ 0 and β(K AB) = β(JM) ≤ 1. Thus VB→B ◦
MA�→B ◦ UA�→A� ∈ Vβ .

APPENDIX B
PROOF OF LEMMA 18

Let G be a finite group, and for every g ∈ G, let g → UA(g)
and g → VB(g) be unitary representation acting on the input
and output spaces of the channel, respectively. Then a quantum
channel NA→B is G-covariant if NA→B

(

UA(g)ρAU†
A(g)

) =
VB(g)NA→B(ρA)V

†
B(g) for all ρA ∈ S(A). We also introduce

the average state ρ̂A = 1
|G|

∑

g UA(g)ρAU†
A(g).

For the convenience of presenting the strong converse
results in Appendix C, we need to introduce the sandwiched
Rényi relative entropy. For any ρ ∈ S, σ ≥ 0 and α ∈
(1,∞), the sandwiched Rényi relative entropy is defined
as [44] and [45],

˜Dα(ρ�σ) := 1

α − 1
log Tr((σ

1−α
2α ρσ

1−α
2α )α), (100)

if suppρ ⊆ supp σ and it is equal to +∞ otherwise. We fur-
ther introduce the Rényi version of ϒ-information:

˜ϒα(N , ρA� ) := min
M∈V

˜Dα(NA�→B(φA� A)�MA�→B(φA� A)),

where φAA� is a purification of ρA� as usual. The following is
a direct adaptation of [39, Proposition 2].

Lemma 18 Let NA�→B be G-covariant with the average
state ρ̂A� . Then, ˜ϒα(N , ρA� ) ≤ ˜ϒα(N , ρ̂A� ).

Proof: Consider the pure quantum state

|ψ�P AA� =
∑

g

1√|G| |g� ⊗ (1A ⊗ UA� (g))|φρAA� � (101)

which purifies ρ̂A� . Then for any fixed CP map MA�→B ∈ V ,
we have the following chain of inequalities in (102)-(106),
shown at the top of the next page. The second line follows
from monotonicity of the sandwiched Rényi relative entropy
under the channel

∑

g |g��g| · |g��g|. The third line follows
from the G-invariance of the channel NA�→B . The fourth
line follows from unitary invariance of the sandwiched Rényi
relative entropy under

∑

g |g��g|⊗V †
B(g). The fifth line follows

from monotonicity of the sandwiched Rényi relative entropy
under the partial trace over P . The last line follows from the
fact that

∑

g
1

|G|V†
B(g) ◦ MA�→B ◦ UA�(g) is still an element

in V .
Finally, we minimize over all maps M ∈ V . The conclusion

then follows because all purifications are related by an isome-
try acting on the purifying system and the quantity ˜ϒα(N , ρA� )
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˜Dα(NA�→B(ψP AA� )
∥

∥MA�→B(ψP AA� ))

≥ ˜Dα
(

∑

g

1

|G| |g��g|P ⊗ NA�→B ◦ UA� (g)(φA� A)
∥

∥

∥

∑

g

1

|G| |g��g|P ⊗ MA�→B ◦ UA� (g)(φA� A)
)

(102)

= ˜Dα
(

∑

g

1

|G| |g��g|P ⊗ VB(g) ◦ NA�→B(φA� A)
∥

∥

∥

∑

g

1

|G| |g��g|P ⊗ MA�→B ◦ UA�(g)(φA� A)
)

(103)

= ˜Dα
(

∑

g

1

|G| |g��g|P ⊗ NA�→B(φA� A)
∥

∥

∥

∑

g

1

|G| |g��g|P ⊗ V†
B(g) ◦ MA�→B ◦ UA�(g)(φA� A)

)

(104)

≥ ˜Dα
(

NA�→B(φA� A)
∥

∥

∥

∑

g

1

|G|V
†
B(g) ◦ MA�→B ◦ UA� (g)(φA� A)

)

(105)

≥ min
M∈V

˜Dα(NA�→B(φA� A)
∥

∥MA�→B(φA� A)). (106)

is invariant under isometries acting on the purifying
system.

Furthermore, we should note that in the proof we only use
the monotonicity of the sandwiched Rényi relative entropy.
The result can thus be trivially generalized to other divergences
and distance measures, including the hypothesis testing diver-
gence and the quantum relative entropy.

APPENDIX C
STRONG CONVERSE FOR ϒ -INFORMATION

In this section, we are trying to establish the strong converse
of ϒ-information and obtain some partial results. Specifically,
we show that ϒ is a strong converse for covariant channels.

Proposition 19 For any quantum channel NA�→B and unas-
sisted code with achievable (r, n, ε), it holds

ε ≥ 1 − 2
−n

(

α−1
α

)(

r− 1
n
˜ϒα(N⊗n)

)

, (107)

where ˜ϒα(N ) := maxρA� ˜ϒα(N , ρA� ).

Proof: Suppose (r, n, ε) is achieved by the average
input state ρA�n . From the proof of Theorem 7,
we have the inequality that C(1)(N⊗n, ρA�n , ε) ≤
Dε

H

(N⊗n
A�→B(φA�n An )

∥

∥MA�n→Bn (φA�n An )
)

. Suppose {FAn Bn ,
1 − FAn Bn } is the optimal test of
Dε

H

(N⊗n
A�→B(φA�n An )�MA�n→Bn (φA�n An )

)

. We obtain

nr ≤ − log f2 and 1 − ε ≤ f1, (108)

with f1 = Tr FAn BnN⊗n
A�→B(φA�n An ), (109)

f2 = Tr FAn BnMA�n→Bn (φA�n An ). (110)

Due to the monotonicity of the sandwiched Rényi relative
entropy under the test {FAn Bn ,1 − FAn Bn}, we have

˜Dα
(N⊗n

A�→B(φAn An )
∥

∥MA�n→Bn (φA�n An )
) ≥ δα( f1� f2),

where δα(p�q) := 1
α−1 log

(

pαq1−α + (1 − p)α(1 − q)1−α).
Using Eqs. (108), we thus find

min
M∈V

˜Dα
(N⊗n

A�→B(φA�n An )�MA�n→Bn (φA�n An )
)

≥ δα(ε �1 − 2−nr ). (111)

Maximizing over all average input state ρA�n , we conclude that

˜ϒα(N⊗n) ≥ δα(ε �1 − 2−nr ) (112)

≥ 1

α − 1
log(1 − ε)α(2−nr )1−α (113)

= α

α − 1
log(1 − ε)+ nr, (114)

which implies that ε ≥ 1 − 2
−n

(

α−1
α

)(

r− 1
n
˜ϒα(N⊗n)

)

.
Note that any generalization of the Rényi divergence that

satisfies the data-processing inequality would suffice for this
proof. But the monotonicity (in terms of α) of the sandwiched
Rényi divergence is required in the following proof.

Proposition 20 For any covariant channel N , ϒ(N ) is a
strong converse bound on the classical capacity.

Proof: From Lemma 18, we can fix the average input
state of ˜ϒα(N ) to be the maximally mixed state. Then ˜ϒα is
subadditive, i.e., ˜ϒα(N⊗n) ≤ n˜ϒα(N ). Thus from Eq. (107),
we have

ε ≥ 1 − 2
−n

(

α−1
α

)

(r−˜ϒα(N ))
. (115)

The quantity ˜ϒα(N ) is monotonically increasing in α. Fol-
lowing the proof of [39, Lemma 3], we can also show that
limα→1+ ˜ϒα(N ) = ϒ(N ). Hence, for r > ϒ(N ), there
always exists an α > 1 such that r > ˜ϒα(N ). Therefore
the error ε will to to 1 as n goes to infinity.

The following two properties would be required to show
that ϒ is a strong converse bound for general channels.

• Weak subadditivity: ˜ϒα(N⊗n) ≤ n˜ϒα(N )+ o(n)
• Continuity: limα→1+ ˜ϒα(N ) = ϒ(N ).

APPENDIX D
NEW META-CONVERSE OVER Vβ IS AN SDP

In this section, we show that our new meta-converse in
Theorem 7 can be written as an SDP. Let us first write

min
M∈Vβ

max
ρA�

Dε
H (NA�→B(φA� A)

∥

∥MA�→B(φA� A)) (116)

= − log max
M∈Vβ

min
ρA
βε(

√
ρA JN

√
ρA

∥

∥

√
ρA JM

√
ρA). (117)
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According to the definition of βε, the minimization part
in (117) is equivalent to the optimization,

minimize
ρA, FAB

Tr
√
ρA JM

√
ρA FAB

subject to Tr
√
ρA JN

√
ρA FAB ≥ 1 − ε,

0 ≤ FAB ≤ 1AB , ρA ≥ 0, Tr ρA = 1. (118)

Let G AB = √
ρA FAB

√
ρA . We have (118) being equivalent to

minimize
ρA,G AB

Tr JMG AB

subject to Tr JN G AB ≥ 1 − ε,

0 ≤G AB ≤ρA ⊗ 1B, ρA ≥ 0, Tr ρA = 1, (119)

with the dual SDP given by

maximize
x, y,Z AB

(1 − ε)x + y

subject to JM − x JN + Z AB ≥ 0,

y1A + TrB Z AB ≤ 0, x ≥ 0, Z AB ≥ 0. (120)

Finally, combining (120) with the maximization condition
M ∈ Vβ in (117), we obtain the following SDP for the meta-
converse (116):

− log maximize
x, y, JM,

Z AB , SB, RAB

(1 − ε)x + y

subject to JM − x JN + Z AB ≥ 0,

y1A + TrB Z AB ≤ 0,

x ≥ 0, Z AB ≥ 0,Tr SB ≤ 1

− RAB ≤ J TB
M ≤ RAB ,

− 1A ⊗ SB ≤ RTB
AB ≤ 1A ⊗ SB . (121)
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